LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2015

CH 4956 - ADVANCED COORDINATION CHEMISTRY

Date: 22/04/2015	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00		

Part-A

Answer all questions. Each question carries two marks.

(10x2=20)

- 1. Organometallic compounds are formed by transition metal ions in the low oxidation state. Comment.
- 2. Cl⁻ occupies the lower end of the spectrochemical series, yet the 10Dq value in $[RuCl_6]^{3-}$ is comparable to that of $[Ru(H_2O)_6]^{2+}$. Offer a reasonable explanation.
- 3. Jahn-Teller distortion arising from the electronic degeneracy of t_{2g} orbitals in octahedral complexes experimental detection. Comment.
- 4. Mention the causes of tetragonal distortion in transition metal complexes.
- 5. For a complex of a transition metal ion $\Delta_0 \sim P$ at room temperature. Comment upon its magnetic properties.
- 6. Differentiate thermodynamic and kinetic coordination template effects.
- 7. How do you differentiate LMCT and MLCT transitions?
- 8. What are the causes of ZFS in transition metal complexes?
- 9. How does angular overlap alter the magnitude of e_{σ} and e_{π} ?
- 10. What are slipped sandwiches? Cite an example.

Part-B

Answer any eight questions. Each question carries five marks.

(8x5=40)

- 11. Explain the structural features and biological roles of Fe-S proteins.
- 12. Illustrate transmetallation reaction with an example.
- 13. How are cyano, isocyano, nitro and nitrito complexes differentiated by IR spectroscopy?
- 14. Explain photoisomerization and photosubstitution reaction in transition metal complexes with illutrative examples.
- 15. What is nitrogen fixation? Explain its mechanism.
- 16. What are coupled chemical reactions? How are they classified? How do you ascertain such processes from cyclic voltammetry?
- 17. Give an account of electrochemical synthesis of coordination compounds.
- 18. Give an account of the structural features of biological electron transfer agents.
- 19. Write a note on chelate therapy.
- 20. Explain the principle of AC polarography. How is the reversibility of a redox couple evaluated by this technique?
- 21. What are optically transparent thin layer electrodes? Mention their importance.
- 22. What is static dynamic Jahn-Teller distortion? How is it studied by esr spectroscopy?

Part-C

	Tult-O				
Ansı	wer any four questions. Each question carries ten marks. (4x10	=40)			
23a.	Explain the electronic spectral features of low-spin and high-spin O_h complexes of d^6 meta	l ion.			
		(4)			
b.	Explain the electronic spectral features of tetragonally distorted O_h complex of low-spin d	6 metalion			
	and the method of evaluating the crystal field parameters.	(6)			
24a.	Derive Marcus-Hush equation to compute the rate constant of electron transfer reaction.	(7)			
b.	How do you differentiate inner- and outer-sphere electron transfer reactions?	(3)			
25a.	Explain hyperfine and superhyperfine splitting.	(3)			
b.	. The epr spectrum of a high spin Mn(II) complex, doped onto a diamagnetic host, consists of 30 ep				
	lines when there is no hyperfine splitting by the ligand. Interpret the spectrum with the help	p of			
	a qualitative hyperfine splitting diagram.	(7)			
26a.	Give an account of the NMR spectra of paramagnetic transition metal complexes.	(5)			
b.	How is low-spin and high-spin Fe(III) complexes differentiated by Mossbauer spec	troscopy?			
	Explain with examples.	(5)			
27.	Explain the principles of angular overlap model. Show that $\Delta_t = 4/9 \; \Delta_o$ with the help of this	s model.			
28a.	Illustate coordination template effect with examples.	(4)			
b.	What are compartmental ligands? Explain the method of synthesizing macrocy	yclic and			
	macroacyclic compartmental ligands with illustrative examples.	(6)			
